Refine Your Search

Topic

Author

Search Results

Technical Paper

Impact of Dynamic Exhaust Valve Modelling

2019-12-19
2019-01-2346
A method developed in SAE 2019-01-0058 to correct for deviations from quasi-steady exhaust valve flow is implemented on a single-cylinder GT-Power model and the effects on pumping work and blowdown pulse characteristics are investigated. The valve flow area is always reduced compared to the reference quasi-steady case. It decreases with higher pressure ratios over the valve and increases with higher engines speeds. The reduced flow area increases pumping work with load and engine speed, though primarily with engine speed. The magnitude of the blowdown pulse is reduced and the peak is shifted to a later crank angle.
Technical Paper

Numerical Investigation of Increasing Turbulence through Piston Geometries on Knock Reduction in Heavy Duty Spark Ignition Engines

2019-12-19
2019-01-2302
Knock in heavy duty (HD) spark ignition (SI) engines is exacerbated by a large bore diameter and a higher flame travel distance. An increase in turbulence close to TDC can improve combustion speed and reduce knock through low residence time for end gas auto-ignition. Since HD SI engines are usually derived from diesel engines, it is common to have a swirl motion that does not dissipate into turbulence. To increase flame speed and limit knock, squish can be used to produce turbulence close to TDC. In this study, two different piston bowl geometries are examined: the re-entrant and quartette. The influence of squish area on turbulence production by these piston geometries were investigated using motored simulations in AVL FIRE. The effect of increased turbulence on knock reduction was analyzed using a calibrated 1D GT-Power model of a HD SI engine and the performance improvement was estimated.
Technical Paper

Comparison of Two Dilution and Conditioning Systems for Particle Number Measurements along the Exhaust After-Treatment System of an HD Diesel Engine

2021-04-06
2021-01-0619
In heavy-duty engines, Euro VI legislation regulates the total particle number (PN) in the exhaust based on the particle measurement program (PMP) guidelines. By PMP directives, the exhaust sample is diluted and conditioned to contain non-volatile particles before measuring the PN. The fraction of non-volatile and volatile particles changes along the exhaust after-treatment system and could affect the total PN measured. Therefore, it is of interest to compare the performance of the dilution systems at different positions along the after-treatment system. For this purpose, a standard PMP compliant two-stage dilution system (DS1) with evaporation tube (ET) was compared with a close coupled two-stage ejector dilution system (DS2). In DS2, the non-volatile PN was measured with a dilution temperature of 350°C (same as the DS1 ET temperature) while the volatile PN was measured with a dilution temperature of 150°C.
Technical Paper

A Test Rig for Evaluating Thermal Cyclic Life and Effectiveness of Thermal Barrier Coatings inside Exhaust Manifolds

2019-04-02
2019-01-0929
Thermal Barrier Coatings (TBCs) may be used on the inner surfaces of exhaust manifolds in heavy-duty diesel engines to improve the fuel efficiency and prolong the life of the component. The coatings need to have a long thermal cyclic life and also be able to reduce the temperature in the substrate material. A lower temperature of the substrate material reduces the oxidation rate and has a positive influence on the thermo-mechanical fatigue life. A test rig for evaluating these properties for several different coatings simultaneously in the correct environment was developed and tested for two different TBCs and one oxidation-resistant coating. Exhausts were redirected from a diesel engine and led through a series of coated pipes. These pipes were thermally cycled by alternating the temperature of the exhausts. Initial damage in the form of cracks within the top coats of the TBCs was found after cycling 150 times between 50°C and 530°C.
Technical Paper

Study of Nozzle Fouling: Deposit Build-Up and Removal

2019-12-19
2019-01-2231
The global demand for decreased emission from engines and increased efficiency drives manufactures to develop more advanced fuel injection systems. Today's compression-ignited engines use common rail systems with high injection pressures and fuel injector nozzles with small orifice diameters. These systems are highly sensitive to small changes in orifice diameters since these could lead to deteriorations in spray characteristics, thus reducing engine performance and increasing emissions. Phenomena that could create problems include nozzle fouling caused by metal carboxylates or biofuels. The problems increase with extended use of biofuels. This paper reports on an experimental study of nozzle hole fouling performed on a single-cylinder engine. The aim was to identify if the solubility of the fuel has an effect on deposit build-up and, thus, the reduction in fuelling with associated torque loss, and if there is a probability of regenerating the contaminated injectors.
Technical Paper

CFD-Driven Preliminary Investigation of Ethanol-Diesel Diffusive Combustion in Heavy-Duty Engines

2019-12-19
2019-01-2192
The introduction of renewable alcohols as fuels for heavy-duty engines may play a relevant role for the reduction of the carbon footprint of the transport sector. The direct injection of ethanol as main fuel and diesel as pilot fuel in the engine combustion chamber through two separate injectors may allow good combustion controllability over the entire engine operating range by targeting diffusive combustion. Closed-cycle combustion simulations have been carried out using AVL FIRE coupled to AVL TABKIN for the implementation of the Flamelet Generated Manifold (FGM) chemistry reduction technique in order to investigate the influence of the injection system geometry and the injection strategy of pure ethanol and diesel fuel on ignition characteristics and combustion at different operating conditions.
Journal Article

A Batch Blending System for Continuous Production of Multi-Component Fuel Blends for Engine Laboratory Tests

2020-09-15
2020-01-2153
The increased rates of research on complex fuel blends in engine applications poses a need for more efficient and accurate fuel blending processes in engine laboratories. Making the fuel blending process automatic, effective, accurate and flexible saves time, storage space and cost without compromising the tests of future fuel alternatives. To meet these requirements, an automatic fuel blending system, following a sequential batch process, was designed and tested for engine laboratory application. The fuel blending system was evaluated in terms of functionality, safety, accuracy and repeatability. The functionality and safety was evaluated through a risk analysis. Whereas, the accuracy and repeatability of the system was investigated through blend preparation tests. The results show that the minimum fuel mass limitation of the system is 0.5 kg. This allows for blends with fuel ratios as low as 7 vol-% to be prepared by the system.
Journal Article

Factors Influencing the Formation of Soft Particles in Biodiesel

2020-09-27
2020-24-0006
In order to mitigate the effect of fossil fuels on global warming, biodiesel is used as drop in fuel. However, in the mixture of biodiesel and diesel, soft particles may form. These soft particles are organic compounds, which can originate from the production and degradation of biodiesel. Further when fuel is mixed with unwanted contaminants such as engine oil the amount soft particles can increase. The presence of these particles can cause malfunction in the fuel system of the engine, such as nozzle fouling, internal diesel injector deposits (IDID) or fuel filter plugging. Soft particles and the mechanism of their formation is curtail to understand in order to study and prevent their effects on the fuel system. This paper focuses on one type of soft particles, which are metal soaps. More precisely on the role of the short chain fatty acids (SCFA) during their formation. In order to do so, aged and unaged B10 was studied.
Journal Article

On the Effects of Turbocharger on Particle Number and Size Distribution in a Heavy - Duty Diesel Engine

2020-09-27
2020-24-0007
Particles emitted from internal combustion engines have adverse health effects and the severity varies based on the particle size. A diesel particulate filter (DPF) in the after-treatment systems is employed to control the particle emissions from combustion engines. The design of a DPF depends on the nature of particle size distribution at the upstream and is important to evaluate. In heavy-duty diesel engines, the turbocharger turbine is an important component affecting the flow and particles. The turbine wheel and housing influence particle number and size. This could potentially be used to reduce particle number or change the distribution to become more favourable for filtration. This work evaluates the effect of a heavy-duty diesel engine’s turbine on particle number and size distribution.
Technical Paper

Correlation of Oil Originating Particle Emissions and Knock in a PFI HD SI Engine Fueled with Methanol

2023-08-28
2023-24-0036
A viable option to reduce global warming related to internal combustion engines is to use renewable fuels, for example methanol. However, the risk of knocking combustion limits the achievable efficiency of SI engines. Hence, most high load operation is run at sub-optimal conditions to suppress knock. Normally the fuel is a limiting factor, however when running on high octane fuels such as methanol, other factors also become important. For example, oil droplets entering the combustion chamber have the possibility to locally impact both temperature and chemical composition. This may create spots with reduced octane number, hence making the engine more prone to knock. Previous research has confirmed a connection between oil droplets in the combustion chamber and knock. Furthermore, previous research has confirmed a connection between oil droplets in the combustion chamber and exhaust particle emissions.
Technical Paper

Semi-Predictive Modeling of Diluted Ethanol and Methanol Combustion in Conventional Spark Ignition Operation

2021-04-06
2021-01-0386
Alcohols offer high resistance to autoignition which is necessary to attain the required load in heavy duty (HD) spark ignition (SI) engines. Dilution increases thermal efficiency and reduces propensity to autoignition making it an important combustion strategy. Reliable and robust prediction at increased dilution is necessary to support development of high efficiency spark ignition engines and the transition to renewable fuels. A previous experimental study demonstrated 25 bar gross IMEPg for ethanol and methanol at λ=1.4 excess air ratio and over 48% indicated efficiency at λ=1.6 on a single cylinder engine. Based on this dataset, a semi-predictive model (SITurb) was fitted for a range of excess air ratios and engine loads. With the default model, poor accuracy was observed above λ=1.4. Ignition delay was incorrectly predicted at λ=1.6 and λ=1.8.
Technical Paper

Reactivity of Diesel Soot from 6- and 8-Cylinder Heavy-Duty Engines

2023-08-28
2023-24-0119
Increasing concern for air pollution together with the introduction of new types of fuels pose new challenges to the exhaust aftertreatment system for heavy-duty (HD) vehicles. For diesel-powered engines, emissions of particulate matter (PM) is one of the main drawbacks due to its effect on health. To mitigate the tailpipe emissions of PM, heavy-duty vehicles are since Euro V equipped with a diesel particulate filter (DPF). The accumulation of particles causes flow restriction resulting in fuel penalties and decreased vehicle performance. Understanding the properties of PM produced during engine operation is important for the development and optimized control of the DPF. This study has focused on assessing the reactivity of the PM by measuring the oxidation kinetics of the carbonaceous fraction. PM was sampled from two different heavy-duty engines during various test cycles.
Technical Paper

Development of a Laboratory Unit to Study Internal Injector Deposits Formation

2023-08-28
2023-24-0078
The formation of deposits in the fuel systems of heavy-duty engines, using drop-in fuels, has been reported in recent years. Drop-in fuels are of interest because they allow higher levels of alternative fuels to be blended with conventional fuels that are compatible with today’s engines. The precipitation of insolubles in the drop-in fuel can lead to clogging of fuel filters and internal injector deposits, resulting in increased fuel consumption and engine drivability problems. The possible mechanisms for the formation of the deposits in the fuel system are not yet fully understood. Several explanations such as operating conditions, fuel quality and contamination have been reported. To investigate injector deposit formation, several screening laboratory test methods have been developed to avoid the use of more costly and complex engine testing.
Technical Paper

Comparison of Fuel Filters and Adsorption Filters for Metal Carboxylate Separation

2021-09-05
2021-24-0064
Heavy-duty transportation accounts for significant part of the greenhouse gas emissions. Currently the most common powertrain for long-haul trucks is compression-ignited engines. In order to reduce the greenhouse gas emissions of these engines, renewable fuels, such as biodiesel can be used. Today biodiesel is used as a drop-in fuel, however when biodiesel is mixed with conventional diesel, soft particles may form. Soft particles have been identified as a mixture of insoluble impurities and degradation products in the fuel. These soft particles can lead to deposits in the injection and fuel filtration system, leading to reduced engine performance. In this paper, zinc-neodecanoate and soft particles from the degradation of biodiesel is studied. In both cases, the emphasis is on soap type contaminants. Zinc-neodecanoate has shown to lead to nozzle fouling, while soft particles from degradation of biodiesel have been found in diesel fuel filters.
Technical Paper

Undiluted Measurement of sub 10 nm Non-Volatile and Volatile Particle Emissions from a DISI Engine Fueled with Gasoline and Ethanol

2021-04-06
2021-01-0629
In this paper, a High-Temperature Electrical Low-Pressure Impactor (HT-ELPI+) was used to measure particles from a light-duty direct injected spark ignited (DISI) engine fueled with gasoline and ethanol. The HT-ELPI+ measured volatile and non-volatile particle emissions down to 6 nm without the need for dilution. Particle emissions were measured at four operating points while sweeping the end of injection, and at idle operation. The total particle number (PN) and particle size distribution (number and mass) for both non-volatile and volatile emissions were measured with the HT-ELPI+ and compared to the measured PN using two 71.4 times diluted Condensation Particle Counters (CPCs) with two different cut-off sizes, with 23 nm and 7 nm cut-off, respectively. The results show an increase in particle emissions in terms of particle mass and total particle number for ethanol compared to gasoline. The difference in soot mass emissions is small between the fuels.
Journal Article

Optimal Pressure Based Detection of Compressor Instabilities Using the Hurst Exponent

2017-03-28
2017-01-1040
The compressor surge line of automotive turbochargers can limit the low-end torque of an engine. In order to determine how close the compressor operates to its surge limit, the Hurst exponent of the pressure signal has recently been proposed as a criterion. The Hurst exponent quantifies the fractal properties of a time series and its long-term memory. This paper evaluates the outcome of applying Hurst exponent based criterion on time-resolved pressure signals, measured simultaneously at different locations in the compression system. Experiments were performed using a truck-sized turbocharger on a cold gas stand at the University of Cincinnati. The pressure sensors were flush-mounted at different circumferential positions at the inlet of the compressor, in the diffuser and volute, as well as downstream of the compressor.
Journal Article

Effects of Boundary Layer and Local Volumetric Cells Refinements on Compressor Direct Noise Computation

2022-06-15
2022-01-0934
The use of turbochargers with downsized internal combustion engines improves road vehicles’ energy efficiency but introduces additional sound sources of strong acoustic annoyance on the turbocharger’s compressor side. In the present study, direct noise computations (DNC) are carried out on a passenger vehicle turbocharger compressor. The work focuses on assessing the influence of grid parameters on the acoustic predictions, to further advance the maturity of the acoustic modelling of such machines with complex three-dimensional features. The effect of the boundary layer mesh structure, and of the spatial resolution of the mesh, on the simulated acoustic signatures is investigated on detached eddy simulations (DES). Refinements in the core mesh are applied in areas of major acoustic production, to generate cells with sizes proportional to the local Taylor microscale values.
Journal Article

Study of Installation Effects on Automotive Cooling Fan Noise

2022-06-15
2022-01-0935
Vehicle electrification is one of the biggest trends in the automotive industry. Without the presence of combustion engine, which is the main noise source on conventional vehicles, noise from other components becomes more perceivable; among these components, the cooling fan is one of the major noise sources, especially during battery charging. The design of cooling fan modules is usually carried out in the early stage before building prototype vehicles. Therefore, understanding the installation effects of the cooling fan on the radiated sound is essential to secure good customer satisfaction. In this study, three different measurement setups of cooling fans are carried out: free field, wall mounted, and in-vehicle measurement. Four cooling fan prototypes with different fan blade designs are used in each measurement. Correlations of these measurements are investigated through comparisons of the measurement results.
Journal Article

Characterization of Deposits Collected from Plugged Fuel Filters

2019-09-09
2019-24-0140
Fuel filters serve as a safety belt for modern compression ignition engines. To meet the requirements from environmental regulations these engines use the common rail injection system, which is highly susceptible to contamination from the fuel. Furthermore, the public awareness towards global warming is raising the need for renewable fuels such as biodiesel. An increased fuel variety brings a higher requirement for fuel filters as well. To better understand the process of filtration, awareness of the different possible contaminants from the field is needed. This study used several chemical characterization techniques to examine the deposits from plugged fuel filters collected from the field. The vehicle was run with a biodiesel blend available on the market.
Technical Paper

On the Effects of Urea and Water Injection on Particles across the SCR Catalyst in a Heavy - Duty Euro VI Diesel Engine

2020-09-15
2020-01-2196
Particle emissions from heavy-duty engines are regulated both by mass and number by Euro VI regulation. Understanding the evolution of particle size and number from the exhaust valve to the tail pipe is of vital importance to expand the possibilities of particle reduction. In this study, experiments were carried out on a heavy-duty Euro VI engine after-treatment system consisting of diesel oxidation catalyst, diesel particulate filter and selective catalytic reduction (SCR) unit with AdBlue injection followed by ammonia slip catalyst. The present work focusses on the SCR unit with regard to total particle number with and without nucleation particles both. Experiments were conducted by varying the AdBlue injection quantity, SCR inlet temperature [to vary the reaction temperature], exhaust mass flow rate [to vary the residence time in SCR], and fuel injection pressures [to vary inlet particle number and inlet NOx].
X